Corrector-predictor methods for sufficient linear complementarity problems
نویسندگان
چکیده
We present a new corrector-predictor method for solving sufficient linear complementarity problems for which a sufficiently centered feasible starting point is available. In contrast with its predictor-corrector counterpart proposed by Miao, the method does not depend on the handicap κ of the problem. The method has O((1+ κ)√nL)-iteration complexity, the same as Miao’s method, but our error estimates are sightly better. The algorithm is quadratically convergent for problems having a strictly complementary solution. We also present a family of infeasible higher order corrector-predictor methods that are superlinearly convergent even in the absence of strict complementarity. The algorithms of this class are globally convergent for general positive starting points. They have O((1 + κ)√nL)-iteration complexity for feasible, or “almost feasible”, starting points and O((1 + κ)2nL)-iteration complexity for “sufficiently large” infeasible starting points.
منابع مشابه
Predictor-corrector methods for sufficient linear complementarity problems in a wide neighborhood of the central path
Two predictor-corrector methods of order m = Ω(logn) are proposed for solving sufficient linear complementarity problems. The methods produce a sequence of iterates in the N− ∞ neighborhood of the central path. The first method requires an explicit upper bound κ of the handicap of the problem while the second method does not. Both methods have O((1 + κ)1+1/m √ nL) iteration complexity. They are...
متن کاملCorrector-Predictor Methods for Sufficient Linear Complementarity Problems in a Wide Neighborhood of the Central Path
A higher order corrector-predictor interior-point method is proposed for solving sufficient linear complementarity problems. The algorithm produces a sequence of iterates in the N− ∞ neighborhood of the central path. The algorithm does not depend on the handicap κ of the problem. It has O((1 + κ) √ nL) iteration complexity and is superlinearly convergent even for degenerate problems.
متن کاملInterior Point Methods for Sufficient Horizontal LCP in a Wide Neighborhood of the Central Path with Best Known Iteration Complexity
Three interior point methods are proposed for sufficient horizontal linear complementarity problems (HLCP): a large update path following algorithm, a first order corrector-predictor method, and a second order corrector-predictor method. All algorithms produce sequences of iterates in the wide neighborhood of the central path introduced by Ai and Zhang. The algorithms do not depend on the handi...
متن کاملInterior Point Methods for Sufficient Lcp in a Wide Neighborhood of the Central Path with Optimal Iteration Complexity
Three interior point methods are proposed for sufficient horizontal linear complementarity problems (HLCP): a large update path following algorithm, a first order corrector-predictor method, and a second order corrector-predictor method. All algorithms produce sequences of iterates in the wide neighborhood of the central path introduced by Ai and Zhang. The algorithms do not depend on the handi...
متن کاملCorrector-predictor arc-search interior-point algorithm for $P_*(kappa)$-LCP acting in a wide neighborhood of the central path
In this paper, we propose an arc-search corrector-predictor interior-point method for solving $P_*(kappa)$-linear complementarity problems. The proposed algorithm searches the optimizers along an ellipse that is an approximation of the central path. The algorithm generates a sequence of iterates in the wide neighborhood of central path introduced by Ai and Zhang. The algorithm does not de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 48 شماره
صفحات -
تاریخ انتشار 2011